Large Area Convex Holes in Random Point Sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large convex holes in random point sets

A convex hole (or empty convex polygon) of a point set P in the plane is a convex polygon with vertices in P , containing no points of P in its interior. Let R be a bounded convex region in the plane. We show that the expected number of vertices of the largest convex hole of a set of n random points chosen independently and uniformly over R is Θ(logn/(log log n)), regardless of the shape of R.

متن کامل

Holes in 2 - convex point sets ∗

Let S be a finite set of n points in the plane in general position. A k-hole of S is a simple polygon with k vertices from S and no points of S in its interior. A simple polygon P is l-convex if no straight line intersects the interior of P in more than l connected components. Moreover, a point set S is l-convex if there exists an l-convex polygonalization of S. Considering a typical Erdős-Szek...

متن کامل

4-Holes in point sets

We consider a variant of a question of Erdős on the number of empty k-gons (k-holes) in a set of n points in the plane, where we allow the k-gons to be non-convex. We show bounds and structural results on maximizing and minimizing the number of general 4-holes, and maximizing the number of non-convex 4-holes. In particular, we show that for n ≥ 9, the maximum number of general 4-holes is ( n 4 ...

متن کامل

Planar Point Sets With Large Minimum Convex Decompositions

We show the existence of sets with n points (n > 4) for which every convex decomposition contains more than f§« — § polygons, which refutes the conjecture that for every set of n points there is a convex decomposition with at most n + C polygons. For sets having exactly three extreme points we show that more than n + s/2(n 3) 4 polygons may be necessary to form a convex decomposition.

متن کامل

Empty non-convex and convex four-gons in random point sets

Let S be a set of n points distributed uniformly and independently in a convex, bounded set in the plane. A four-gon is called empty if it contains no points of S in its interior. We show that the expected number of empty non-convex four-gons with vertices from S is 12n logn + o(n logn) and the expected number of empty convex four-gons with vertices from S is Θ(n). keywords: random point set, e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2016

ISSN: 0895-4801,1095-7146

DOI: 10.1137/15m1024184